Passzív diffúzió

Figure 6-2. Schematic diagram characterizing transport of a drug in solution across a membrane by passive diffusion.

V_o = volume of outside compartment

 V_i = volume of inside compartment

C_o = drug concentration in outside compartment

 C_i = drug concentration in inside compartment

D = diffusion constant of drug in lipoid material

k = partition coefficient

h = membrane thickness

q = transport stream [mass of solute diffused per unit time across the membrane]

Konvektív transzport

Figure 6-3. Schematic diagram characterizing transfer of a drug in solution across a membrane by convective transport.

 V_0 = volume of outside compartment

 V_i = volume of inside compartment

C_o = drug concentration in outside compartment

 C_1 = drug concentration in inside compartment

n = number of pores

h = thickness of membrane

r = radius of pore

A = surface area of pore

 η = viscosity of fluid in pore

q = transport stream [mass of solute diffusing per unit time across the membrane]

Konvektív transzport 2.

Figure 6-4. Schematic diagram characterizing transfer of small ions across a membrane by convective transport.

Aktív transzport

Figure 6-5. Schematic diagram characterizing transport of a drug in solution across a membrane by active transport.

Facilitált transzport

Figure 6-8. Schematic diagram characterizing transfer of a drug in solution across a membrane by facilitated transport.

Ion-pár transzport

Figure 6-9. Schematic diagram characterizing transfer of a drug in solution across a membrane by ion-pair transport.

Pinocitózis

Figure 6-10. Schematic diagram characterizing transfer of particulate matter or oil droplets across a membrane by pinocytosis.